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| Introduction

Problem formulation

We consider the problem

min
w∈E

f (w) + g(w)− h(w)

where f , g , h : E → (−∞,+∞] and E is a Euclidean space.

What is the “usual” setting1 considered?

f is convex and has L-Lipschitz continuous gradient.

g is proper closed and convex.

h is continuous convex.

1Wen, B. Chen, X. and Pong, T.K. A proximal difference-of-convex algorithm with
extrapolation. Computational Optimization and Applications, 69:297–324, 2018.
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| Introduction

Proximal difference-of-convex algorithm (pDCA)1

pDCA algorithm

wk+1 = proxλg

(
wk − 1

L
∇f (wk) +

1

L
ξk
)

where ξk ∈ ∂h(wk) and

proxλg (w) := argmin
z∈E

{
g(z) +

1

2λ
∥z − w∥2

}
.

Questions

Can we extend this to possibly nondifferentiable f ?
How about to nonconvex functions f , g and h?
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| Min-convex optimization

ρ-convex functions

Definition (ρ-convex function)

A function F is said to be ρ-convex if F (w)− ρ
2∥w∥2 is a convex

function.
F is said to be

weakly convex if ρ < 0

convex if ρ ≥ 0

strongly convex if ρ > 0.
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| Min-convex optimization

min-ρ-convex functions

Definition (min-ρ-convex function)

We say that g : E → (−∞,+∞] is a min-ρ-convex function if there
exist an index set J with |J| < ∞, and ρ-convex, proper closed functions
gj : E → IR ∪ {+∞}, j ∈ J, such that

g(w) = min
j∈J

gj(w), ∀w ∈ E.

We call g
min-weakly convex if ρ < 0

min-convex if ρ ≥ 0

min-strongly convex if ρ > 0.

J. H. Alcantara | Institute of Statistical Sciences, Academia Sinica | January 18, 2022 7



| Min-convex optimization

min-ρ-convex functions

Definition (min-ρ-convex function)

We say that g : E → (−∞,+∞] is a min-ρ-convex function if there
exist an index set J with |J| < ∞, and ρ-convex, proper closed functions
gj : E → IR ∪ {+∞}, j ∈ J, such that

g(w) = min
j∈J

gj(w), ∀w ∈ E.

We call g
min-weakly convex if ρ < 0

min-convex if ρ ≥ 0

min-strongly convex if ρ > 0.

J. H. Alcantara | Institute of Statistical Sciences, Academia Sinica | January 18, 2022 7



| Min-convex optimization

A min-convex function
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| Min-convex optimization

A min-convex function
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| Min-convex optimization

min
w∈E

f (w) + g(w)− h(w)

Assumption A

1 The functions f , g and h are expressible as

f = min
i∈I

fi , g = min
j∈J

gj , and h = max
m∈M

hm,

where I , J and M are finite index sets.
2 ∀i ∈ I , fi has Li -Lipschitz continuous gradient on E.

3 g is a min-ρ-convex function.

4 ∀m ∈ M, hm is a C 1 convex function on E.
5 ∀(i , j ,m) ∈ I × J ×M, fi + gj − hm is coercive over E.
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| Min-convex optimization

Remarks

1 f is not necessarily smooth, but is piecewise smooth.

2 g is not necessarily convex.

proxλg is single-valued for any w ∈ E and λ ∈ (0, λ̄) where

λ̄ =

{
−1/ρ if ρ < 0,

+∞ if ρ ≥ 0.

3 h is a convex piecewise smooth function.
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| Min-convex optimization

How do we solve such a problem under these assumptions?

Some notations . . .

1 Given S ⊆ E, proxλg (S) :=
⋃
w∈S

proxλg (w).

2 We denote f ′ : E ⇒ E is defined by

f ′(w) := {∇fi (w) : i ∈ I such that f (w) = fi (w)} ,

and similarly, h′ : E ⇒ E is given by

h′(w) := {∇hm(w) : m ∈ M such that h(w) = hm(w)} .

J. H. Alcantara | Institute of Statistical Sciences, Academia Sinica | January 18, 2022 11



| Min-convex optimization

How do we solve such a problem under these assumptions?

Some notations . . .

1 Given S ⊆ E, proxλg (S) :=
⋃
w∈S

proxλg (w).

2 We denote f ′ : E ⇒ E is defined by

f ′(w) := {∇fi (w) : i ∈ I such that f (w) = fi (w)} ,

and similarly, h′ : E ⇒ E is given by

h′(w) := {∇hm(w) : m ∈ M such that h(w) = hm(w)} .

J. H. Alcantara | Institute of Statistical Sciences, Academia Sinica | January 18, 2022 11



| Min-convex optimization

How do we solve such a problem under these assumptions?

Some notations . . .

1 Given S ⊆ E, proxλg (S) :=
⋃
w∈S

proxλg (w).

2 We denote f ′ : E ⇒ E is defined by

f ′(w) := {∇fi (w) : i ∈ I such that f (w) = fi (w)} ,

and similarly, h′ : E ⇒ E is given by

h′(w) := {∇hm(w) : m ∈ M such that h(w) = hm(w)} .

J. H. Alcantara | Institute of Statistical Sciences, Academia Sinica | January 18, 2022 11



| Min-convex optimization

How do we solve such a problem under these assumptions?

Some notations . . .

1 Given S ⊆ E, proxλg (S) :=
⋃
w∈S

proxλg (w).

2 We denote f ′ : E ⇒ E is defined by

f ′(w) := {∇fi (w) : i ∈ I such that f (w) = fi (w)} ,

and similarly, h′ : E ⇒ E is given by

h′(w) := {∇hm(w) : m ∈ M such that h(w) = hm(w)} .

J. H. Alcantara | Institute of Statistical Sciences, Academia Sinica | January 18, 2022 11



| Min-convex optimization

Proximal difference-of-min-convex algorithm (PDMC)

PDMC algorithm (A. & Lee, 2022)

wk+1 ∈ proxλg

(
wk − λf ′(wk) + λh′(wk)

)
, (PDMC)

where λ ∈ (0, λ̄) ∩ (0, 1/L], and L := maxi∈I Li

What can we say about the convergence of this algorithm?
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| Min-convex optimization

Global convergence to critical points

Theorem (A. & Lee, 2022)

Let {wk} be any sequence generated by (PDMC) with
λ ∈ (0,min{λ̄, 1/L}).
If Assumption A holds, then {wk} is bounded and its accumulation
points are critical points2 of f + g − h.

2We say that w is a critical point if 0 ∈ ∂f (w) + ∂g(w)− ∂h(w).
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| Min-convex optimization

Special cases

Define Tλ : E ⇒ E by

Tλ(w) := proxλg
(
w − λf ′(w) + λh′(w)

)

Full convergence

If w∗ is an accumulation point and Tλ is single-valued at w∗, then
wk → w∗ under any of the following conditions:

1 each Id − λ∇fi and ∇hm are nonexpansive and gj is ρ-convex with
ρ ≥ 1, or

2 each Id − λ∇fi is nonexpansive, h ≡ 0 and gj is ρ-convex with
ρ ≥ 0,

with local linear rate if ρ > 1 and ρ > 0, respectively.
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| Min-convex optimization

Local linear rate also holds when
3 h ≡ 0, gj = δRj

and each Id − λ∇fi is a contraction over Rj ,
where each Rj is a convex set4.

Remark

1 For case 2, PDMC reduces to a generalized forward-backward
algorithm.

2 For case 3, PDMC simplifies to a generalized projected subgradient
algorithm.

4In this case, gj is a ρ-convex function with ρ = 0.
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| Acceleration Methods

Acceleration method 1: Extrapolation

We do extrapolation if consecutive iterates activate the same piece of
f + g − h.

χk :=

{
1 if wk & wk−1 activate the same piece and k ≥ 1,

0 otherwise,
(1)

Algorithm 1: Accelerated proximal difference-of-min-convex algorithm

Let ϕ = f + g − h. Choose σ > 0, λ ∈ (0, 1/L] ∩ (0, λ̄), and w0 ∈ E.
Set w−1 = w0 and k = 0.

Step 1. Set zk = wk + tkχkp
k , where pk = wk − wk−1, tk ≥ 0

satisfies
ϕ(zk) ≤ ϕ(wk)− σ

2
t2kχ

2
k∥pk∥2, (2)

and χk is given by (1).
Step 2. Set wk+1 ∈ Tλ(zk), k = k + 1, and go back to Step 1.

J. H. Alcantara | Institute of Statistical Sciences, Academia Sinica | January 18, 2022 17



| Acceleration Methods

Acceleration method 2: Component identification

Algorithm 2: Proximal difference-of-min-convex algorithm with compo-
nent identification
Choose w0 ∈ E, N ∈ N. Set Unchanged = 0, k = 0.

Step 1. Set Unchanged = χk(Unchanged + 1)

Step 2. Compute wk+1 according to the following rule:

2.1 If Unchanged < N: set wk+1 ∈ Tλ(wk). Terminate if
wk+1 ∈ Fix(Tλ); otherwise, set k = k + 1 and go back to
Step 1.

2.2 If Unchanged = N: pick (i , j ,m) activated by wk , and solve

wk+1 ∈ argmin
z∈E

fi (z) + gj(z)− hm(z). (3)

Terminate if wk+1 ∈ Fix(Tλ); otherwise, set Unchanged
= −1, wk+1 = wk , k = k + 1, and go back to Step 1.

J. H. Alcantara | Institute of Statistical Sciences, Academia Sinica | January 18, 2022 18
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| Application to LCP

Application: Linear complementarity problem

Consider the linear complementarity problem (LCP): Find x ∈ IRn

such that

x ≥ 0, Mx − d ≥ 0, and ⟨x ,Mx − d⟩ = 0, (LCP)

where M ∈ IRn×n and d ∈ IRn.

Let y := Mx − d . Then (LCP) is equivalent to{
x ≥ 0, y ≥ 0, ⟨x , y⟩ = 0

Mx − y = d .

We denote w := (x , y).
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| Application to LCP

Feasibility reformulation of LCP

Find w ∈ S1 ∩ S2
where

S1 = {w ∈ IR2n : Tw = d} where T := [M − In]

S2 = {w ∈ IR2n : wj ≥ 0, wn+j ≥ 0, and wjwn+j = 0 ∀j ∈ [n]}.

1 S1 is an affine set, and therefore convex.

2 S2 is nonconvex, but can be expressed as a finite union of closed
convex sets (called a union convex set5)

5Dao, M.N. and Tam, M.K.. Union averaged operators with applications to proximal
algorithms for min-convex functions. J. Optim. Theory Appl., 181:61–94, 2019.

J. H. Alcantara | Institute of Statistical Sciences, Academia Sinica | January 18, 2022 21



| Application to LCP

Feasibility reformulation of LCP

Find w ∈ S1 ∩ S2
where

S1 = {w ∈ IR2n : Tw = d} where T := [M − In]

S2 = {w ∈ IR2n : wj ≥ 0, wn+j ≥ 0, and wjwn+j = 0 ∀j ∈ [n]}.

1 S1 is an affine set, and therefore convex.

2 S2 is nonconvex, but can be expressed as a finite union of closed
convex sets (called a union convex set5)

5Dao, M.N. and Tam, M.K.. Union averaged operators with applications to proximal
algorithms for min-convex functions. J. Optim. Theory Appl., 181:61–94, 2019.
J. H. Alcantara | Institute of Statistical Sciences, Academia Sinica | January 18, 2022 21



| Application to LCP

Example

Let n = 1 so that

S2 = {(w1,w2) : w1,w2 ≥ 0 and w1w2 = 0}.

Then S1 = R1 ∪ R2 where

R1 = {(a, 0) : a ≥ 0}
R2 = {(0, b) : b ≥ 0}
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| Application to LCP

From feasibility reformulation to optimization problem

The following are equivalent:

1 w ∈ S1 ∩ S2

2
1
2 dist(w , S1)

2 + 1
2 dist(w ,S2)

2 = 0

3
1
2 dist(w , S1)

2 + δS2(w) = 0.

Merit functions

f + g − h

1
1
2 dist(w ,S1)

2 + 1
2∥w∥2 −

(
1
2∥w∥2 − 1

2 dist(w ,S2)
2
)

2
1
2 dist(w ,S1)

2 + 1
2 dist(w ,S2)

2 − 0

3
1
2 dist(w ,S1)

2 + δS2(w)− 0

Do these functions f , g and h satisfy Assumption A?
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| Application to LCP

Recall...

min
w∈E

f (w) + g(w)− h(w)

Assumptions A1-A4

1 f = min
i∈I

fi , g = min
j∈J

gj , and h = max
m∈M

hm, where |I |, |J|, |M| < ∞
2 ∀i ∈ I , fi has Li -Lipschitz continuous gradient on E.
3 ∀j ∈ J, gj is a ρ-convex function.
4 ∀m ∈ M, hm is a C 1 convex function on E.
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| Application to LCP

Illustration: Merit Function 2

0.5 dist(w ,S1)
2︸ ︷︷ ︸

f (w)

+0.5 dist(w , S2)
2︸ ︷︷ ︸

g(w)

− 0︸︷︷︸
h(w)

1 Clearly, f and h satisfy Assumption A2 and A4.

2 Since S2 is a union convex set, then

S2 =
⋃
j∈J

Rj .

Thus,

g(w) =
1

2
dist(w ,S2)

2 = min
j∈J

1

2
dist(w ,Rj)

2 =: min
j∈J

gj(w).

where each gj is convex. A3 is satisfied!

All these can be extended to feasibility problems involving
union convex sets S1 and S2.
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| Application to LCP

(Complete) Assumption A

1 f = min
i∈I

fi , g = min
j∈J

gj , and h = max
m∈M

hm, where |I |, |J|, |M| < ∞
where I , J and M are finite index sets.

2 ∀i ∈ I , fi has Li -Lipschitz continuous gradient on E.
3 ∀j ∈ J, gj is a ρ-convex function.
4 ∀m ∈ M, hm is a C 1 convex function on E.
5 For all (i , j ,m) ∈ I × J ×M, the function fi + gj − hm is coercive

over E.

Remark

For the LCP, Assumption A5 holds when M is a P-matrix (A. & Lee,
2022).
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| Numerical Results

Merit Function 1
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Figure: Non-accelerated and accelerated PDMC for Merit Function 1 for solving a
standard LCP.7

7Kanzow, C. Some noninterior continuation methods for linear complementarity
problems. SIAM Journal on Matrix Analysis and Applications, 17(4):851–868, 1996.
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| Numerical Results

Merit Function 2
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Figure: Non-accelerated and accelerated PDMC for Merit Function 2 for solving a
standard LCP.7

7Kanzow, C. Some noninterior continuation methods for linear complementarity
problems. SIAM Journal on Matrix Analysis and Applications, 17(4):851–868, 1996.
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| Numerical Results

Merit Function 3
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Figure: Non-accelerated and accelerated PDMC for Merit Function 3 for solving a
standard LCP.7

7Kanzow, C. Some noninterior continuation methods for linear complementarity
problems. SIAM Journal on Matrix Analysis and Applications, 17(4):851–868, 1996.
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| Numerical Results

Thank you for listening!
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| Numerical Results
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Critical points

For any function F , its subdifferential2 at w is

∂F (w) :=

lim sup
w̄→w ,F (w̄)→F (w)

(
∂̂F (w̄) := {v : v ∈ E, h(z) ≥ h(w) + ⟨v , z − w⟩+ o(∥z − w∥)}

)
,

Definition3

We say that w is a critical point of f + g − h if

0 ∈ ∂f (w) + ∂g(w)− ∂h(w).

2Rockafellar, R.T. and Wets, R.J. Variational Analysis, volume 317 of Grundlehren
der Mathematischen Wissenschaften. Springer, Berlin, 1998.

3Coincides with the definition of critical point of Wen et. al. in the “usual” setting.
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