Proximal algorithms for a class of nonconvex nonsmooth minimization problems involving piecewise smooth and min-weakly-convex functions

Jan Harold Alcantara
Institute of Statistical Sciences, Academia Sinica

A joint work with Ching-pei Lee

January 18, 2022

Outline

- Introduction
- Min-convex optimization
- Acceleration Methods
- Application to LCP
- Numerical Results

Problem formulation

We consider the problem

$$
\min _{w \in \mathbb{E}} f(w)+g(w)-h(w)
$$

where $f, g, h: \mathbb{E} \rightarrow(-\infty,+\infty]$ and \mathbb{E} is a Euclidean space.

Problem formulation

We consider the problem

$$
\min _{w \in \mathbb{E}} f(w)+g(w)-h(w)
$$

where $f, g, h: \mathbb{E} \rightarrow(-\infty,+\infty]$ and \mathbb{E} is a Euclidean space.
What is the "usual" setting ${ }^{1}$ considered?

- f is convex and has L-Lipschitz continuous gradient.

■ g is proper closed and convex.

- h is continuous convex.

[^0]
Proximal difference-of-convex algorithm $(\mathrm{pDCA})^{1}$

pDCA algorithm

$$
w^{k+1}=\operatorname{prox}_{\lambda g}\left(w^{k}-\frac{1}{L} \nabla f\left(w^{k}\right)+\frac{1}{L} \xi^{k}\right)
$$

where $\xi^{k} \in \partial h\left(w^{k}\right)$ and

$$
\operatorname{prox}_{\lambda g}(w):=\underset{z \in \mathbb{E}}{\arg \min }\left\{g(z)+\frac{1}{2 \lambda}\|z-w\|^{2}\right\} .
$$

Proximal difference-of-convex algorithm $(\mathrm{pDCA})^{1}$

pDCA algorithm

$$
w^{k+1}=\operatorname{prox}_{\lambda g}\left(w^{k}-\frac{1}{L} \nabla f\left(w^{k}\right)+\frac{1}{L} \xi^{k}\right)
$$

where $\xi^{k} \in \partial h\left(w^{k}\right)$ and

$$
\operatorname{prox}_{\lambda g}(w):=\underset{z \in \mathbb{E}}{\arg \min }\left\{g(z)+\frac{1}{2 \lambda}\|z-w\|^{2}\right\} .
$$

Questions

Can we extend this to possibly nondifferentiable f ?
How about to nonconvex functions f, g and h ?

Outline

- Introduction
- Min-convex optimization
- Acceleration Methods
- Application to LCP

■ Numerical Results

ρ-convex functions

Definition (ρ-convex function)
A function F is said to be ρ-convex if $F(w)-\frac{\rho}{2}\|w\|^{2}$ is a convex function.
F is said to be
■ weakly convex if $\rho<0$

- convex if $\rho \geq 0$
- strongly convex if $\rho>0$.

min- ρ-convex functions

Definition (min- ρ-convex function)
We say that $g: \mathbb{E} \rightarrow(-\infty,+\infty]$ is a min- ρ-convex function if there exist an index set J with $|J|<\infty$, and ρ-convex, proper closed functions $g_{j}: \mathbb{E} \rightarrow \mathbb{R} \cup\{+\infty\}, j \in J$, such that

$$
g(w)=\min _{j \in J} g_{j}(w), \quad \forall w \in \mathbb{E} .
$$

min- ρ-convex functions

Definition (min- ρ-convex function)
We say that $g: \mathbb{E} \rightarrow(-\infty,+\infty]$ is a min- ρ-convex function if there exist an index set J with $|J|<\infty$, and ρ-convex, proper closed functions $g_{j}: \mathbb{E} \rightarrow \mathbb{R} \cup\{+\infty\}, j \in J$, such that

$$
g(w)=\min _{j \in J} g_{j}(w), \quad \forall w \in \mathbb{E} .
$$

We call g
■ min-weakly convex if $\rho<0$

- min-convex if $\rho \geq 0$
- min-strongly convex if $\rho>0$.

A min-convex function

A min-convex function

A min-convex function

$$
\min _{w \in \mathbb{E}} f(w)+g(w)-h(w)
$$

Assumption A

$3 g$ is a min- ρ-convex function.

$$
\min _{w \in \mathbb{E}} f(w)+g(w)-h(w)
$$

Assumption A

1 The functions f, g and h are expressible as

$$
f=\min _{i \in I} f_{i}, \quad g=\min _{j \in J} g_{j}, \quad \text { and } \quad h=\max _{m \in M} h_{m},
$$

where I, J and M are finite index sets.
$3 g$ is a min- ρ-convex function.

$$
\min _{w \in \mathbb{E}} f(w)+g(w)-h(w)
$$

Assumption A

1 The functions f, g and h are expressible as

$$
f=\min _{i \in I} f_{i}, \quad g=\min _{j \in J} g_{j}, \quad \text { and } \quad h=\max _{m \in M} h_{m},
$$

where I, J and M are finite index sets.
$2 \forall i \in I, f_{i}$ has L_{i}-Lipschitz continuous gradient on \mathbb{E}.
$3 g$ is a min- ρ-convex function.

$$
\min _{w \in \mathbb{E}} f(w)+g(w)-h(w)
$$

Assumption A

1 The functions f, g and h are expressible as

$$
f=\min _{i \in I} f_{i}, \quad g=\min _{j \in J} g_{j}, \quad \text { and } \quad h=\max _{m \in M} h_{m},
$$

where I, J and M are finite index sets.
$2 \forall i \in I, f_{i}$ has L_{i}-Lipschitz continuous gradient on \mathbb{E}.
$3 g$ is a min- ρ-convex function.
$4 \forall m \in M, h_{m}$ is a C^{1} convex function on \mathbb{E}.

$$
\min _{w \in \mathbb{E}} f(w)+g(w)-h(w)
$$

Assumption A

1 The functions f, g and h are expressible as

$$
f=\min _{i \in I} f_{i}, \quad g=\min _{j \in J} g_{j}, \quad \text { and } \quad h=\max _{m \in M} h_{m},
$$

where I, J and M are finite index sets.
$2 \forall i \in I, f_{i}$ has L_{i}-Lipschitz continuous gradient on \mathbb{E}.
$3 g$ is a min- ρ-convex function.
$4 \forall m \in M, h_{m}$ is a C^{1} convex function on \mathbb{E}.
$5 \forall(i, j, m) \in I \times J \times M, f_{i}+g_{j}-h_{m}$ is coercive over \mathbb{E}.

Remarks

$1 f$ is not necessarily smooth, but is piecewise smooth.

Remarks

$1 f$ is not necessarily smooth, but is piecewise smooth.
$2 g$ is not necessarily convex.

Remarks

$1 f$ is not necessarily smooth, but is piecewise smooth.
$2 g$ is not necessarily convex. $\operatorname{prox}_{\lambda g}$ is single-valued for any $w \in \mathbb{E}$ and $\lambda \in(0, \bar{\lambda})$ where

$$
\bar{\lambda}= \begin{cases}-1 / \rho & \text { if } \rho<0 \\ +\infty & \text { if } \rho \geq 0\end{cases}
$$

Remarks

$1 f$ is not necessarily smooth, but is piecewise smooth.
$2 g$ is not necessarily convex. $\operatorname{prox}_{\lambda g}$ is single-valued for any $w \in \mathbb{E}$ and $\lambda \in(0, \bar{\lambda})$ where

$$
\bar{\lambda}= \begin{cases}-1 / \rho & \text { if } \rho<0 \\ +\infty & \text { if } \rho \geq 0\end{cases}
$$

$3 h$ is a convex piecewise smooth function.

How do we solve such a problem under these assumptions?

Some notations ...

How do we solve such a problem under these assumptions?

Some notations ...
1 Given $S \subseteq \mathbb{E}, \operatorname{prox}_{\lambda g}(S):=\bigcup_{w \in S} \operatorname{prox}_{\lambda g}(w)$.

How do we solve such a problem under these assumptions?

Some notations ...
1 Given $S \subseteq \mathbb{E}, \operatorname{prox}_{\lambda g}(S):=\bigcup_{w \in S} \operatorname{prox}_{\lambda g}(w)$.
2 We denote $f^{\prime}: \mathbb{E} \rightrightarrows \mathbb{E}$ is defined by

$$
f^{\prime}(w):=\left\{\nabla f_{i}(w): i \in I \text { such that } f(w)=f_{i}(w)\right\}
$$

How do we solve such a problem under these assumptions?

Some notations ...
1 Given $S \subseteq \mathbb{E}, \operatorname{prox}_{\lambda g}(S):=\bigcup_{w \in S} \operatorname{prox}_{\lambda g}(w)$.
2 We denote $f^{\prime}: \mathbb{E} \rightrightarrows \mathbb{E}$ is defined by

$$
f^{\prime}(w):=\left\{\nabla f_{i}(w): i \in I \text { such that } f(w)=f_{i}(w)\right\}
$$

and similarly, $h^{\prime}: \mathbb{E} \rightrightarrows \mathbb{E}$ is given by

$$
h^{\prime}(w):=\left\{\nabla h_{m}(w): m \in M \text { such that } h(w)=h_{m}(w)\right\} .
$$

Proximal difference-of-min-convex algorithm (PDMC)

PDMC algorithm (A. \& Lee, 2022)

$$
w^{k+1} \in \operatorname{prox}_{\lambda g}\left(w^{k}-\lambda f^{\prime}\left(w^{k}\right)+\lambda h^{\prime}\left(w^{k}\right)\right),
$$

where $\lambda \in(0, \bar{\lambda}) \cap(0,1 / L]$, and $L:=\max _{i \in I} L_{i}$

Proximal difference-of-min-convex algorithm (PDMC)

PDMC algorithm (A. \& Lee, 2022)

$$
w^{k+1} \in \operatorname{prox}_{\lambda g}\left(w^{k}-\lambda f^{\prime}\left(w^{k}\right)+\lambda h^{\prime}\left(w^{k}\right)\right),
$$

where $\lambda \in(0, \bar{\lambda}) \cap(0,1 / L]$, and $L:=\max _{i \in I} L_{i}$

What can we say about the convergence of this algorithm?

Global convergence to critical points

Theorem (A. \& Lee, 2022)
Let $\left\{w^{k}\right\}$ be any sequence generated by (PDMC) with
$\lambda \in(0, \min \{\bar{\lambda}, 1 / L\})$.
If Assumption A holds, then $\left\{w^{k}\right\}$ is bounded and its accumulation points are critical points ${ }^{2}$ of $f+g-h$.

[^1]
Special cases

Define $T^{\lambda}: \mathbb{E} \rightrightarrows \mathbb{E}$ by

$$
T^{\lambda}(w):=\operatorname{prox}_{\lambda g}\left(w-\lambda f^{\prime}(w)+\lambda h^{\prime}(w)\right)
$$

Special cases

Define $T^{\lambda}: \mathbb{E} \rightrightarrows \mathbb{E}$ by

$$
T^{\lambda}(w):=\operatorname{prox}_{\lambda g}\left(w-\lambda f^{\prime}(w)+\lambda h^{\prime}(w)\right)
$$

Full convergence

If w^{*} is an accumulation point and T^{λ} is single-valued at w^{*}, then $w^{k} \rightarrow w^{*}$ under any of the following conditions:
1 each $I d-\lambda \nabla f_{i}$ and ∇h_{m} are nonexpansive and g_{j} is ρ-convex with $\rho \geq 1$, or
2 each $I d-\lambda \nabla f_{i}$ is nonexpansive, $h \equiv 0$ and g_{j} is ρ-convex with $\rho \geq 0$,
with local linear rate if $\rho>1$ and $\rho>0$, respectively.

Local linear rate also holds when
$3 h \equiv 0, g_{j}=\delta_{R_{j}}$ and each $I d-\lambda \nabla f_{i}$ is a contraction over R_{j}, where each R_{j} is a convex set ${ }^{4}$.
${ }^{4}$ In this case, g_{j} is a ρ-convex function with $\rho=0$.

Local linear rate also holds when
$3 h \equiv 0, g_{j}=\delta_{R_{j}}$ and each $I d-\lambda \nabla f_{i}$ is a contraction over R_{j}, where each R_{j} is a convex set ${ }^{4}$.

Remark

1 For case 2, PDMC reduces to a generalized forward-backward algorithm.

2 For case 3, PDMC simplifies to a generalized projected subgradient algorithm.
${ }^{4}$ In this case, g_{j} is a ρ-convex function with $\rho=0$.

Outline

- Introduction
- Min-convex optimization
- Acceleration Methods
- Application to LCP

■ Numerical Results

Acceleration method 1: Extrapolation

We do extrapolation if consecutive iterates activate the same piece of $f+g-h$.

$$
\chi_{k}:= \begin{cases}1 & \text { if } w^{k} \& w^{k-1} \text { activate the same piece and } k \geq 1, \tag{1}\\ 0 & \text { otherwise },\end{cases}
$$

Algorithm 1: Accelerated proximal difference-of-min-convex algorithm Let $\phi=f+g-h$. Choose $\sigma>0, \lambda \in(0,1 / L] \cap(0, \bar{\lambda})$, and $w^{0} \in \mathbb{E}$. Set $w^{-1}=w^{0}$ and $k=0$.

Step 1. Set $z^{k}=w^{k}+t_{k} \chi_{k} p^{k}$, where $p^{k}=w^{k}-w^{k-1}, t_{k} \geq 0$ satisfies

$$
\begin{equation*}
\phi\left(z^{k}\right) \leq \phi\left(w^{k}\right)-\frac{\sigma}{2} t_{k}^{2} \chi_{k}^{2}\left\|p^{k}\right\|^{2} \tag{2}
\end{equation*}
$$

and χ_{k} is given by (1).
Step 2. Set $w^{k+1} \in T^{\lambda}\left(z^{k}\right), k=k+1$, and go back to Step 1.

Acceleration method 2: Component identification

Algorithm 2: Proximal difference-of-min-convex algorithm with component identification
Choose $w^{0} \in \mathbb{E}, N \in \mathbb{N}$. Set Unchanged $=0, k=0$.
Step 1. Set Unchanged $=\chi_{k}($ Unchanged +1$)$
Step 2. Compute w^{k+1} according to the following rule:
2.1 If Unchanged $<N$: set $w^{k+1} \in T^{\lambda}\left(w^{k}\right)$. Terminate if $w^{k+1} \in \operatorname{Fix}\left(T^{\lambda}\right)$; otherwise, set $k=k+1$ and go back to Step 1.
2.2 If Unchanged $=N$: pick (i, j, m) activated by w^{k}, and solve

$$
\begin{equation*}
w^{k+1} \in \underset{z \in \mathbb{E}}{\arg \min } f_{i}(z)+g_{j}(z)-h_{m}(z) . \tag{3}
\end{equation*}
$$

Terminate if $w^{k+1} \in \operatorname{Fix}\left(T^{\lambda}\right)$; otherwise, set Unchanged $=-1, w^{k+1}=w^{k}, k=k+1$, and go back to Step 1 .

Outline

- Introduction
- Min-convex optimization
- Acceleration Methods
- Application to LCP

■ Numerical Results

Application: Linear complementarity problem

■ Consider the linear complementarity problem (LCP): Find $x \in \mathbb{R}^{n}$ such that

$$
\begin{equation*}
x \geq 0, \quad M x-d \geq 0, \quad \text { and } \quad\langle x, M x-d\rangle=0 \tag{LCP}
\end{equation*}
$$

where $M \in \mathbb{R}^{n \times n}$ and $d \in \mathbb{R}^{n}$.

Application: Linear complementarity problem

■ Consider the linear complementarity problem (LCP): Find $x \in \mathbb{R}^{n}$ such that

$$
\begin{equation*}
x \geq 0, \quad M x-d \geq 0, \quad \text { and } \quad\langle x, M x-d\rangle=0 \tag{LCP}
\end{equation*}
$$

where $M \in \mathbb{R}^{n \times n}$ and $d \in \mathbb{R}^{n}$.
■ Let $y:=M x-d$. Then (LCP) is equivalent to

$$
\left\{\begin{array}{l}
x \geq 0, \quad y \geq 0, \quad\langle x, y\rangle=0 \\
M x-y=d
\end{array}\right.
$$

Application: Linear complementarity problem

■ Consider the linear complementarity problem (LCP): Find $x \in \mathbb{R}^{n}$ such that

$$
\begin{equation*}
x \geq 0, \quad M x-d \geq 0, \quad \text { and } \quad\langle x, M x-d\rangle=0 \tag{LCP}
\end{equation*}
$$

where $M \in \mathbb{R}^{n \times n}$ and $d \in \mathbb{R}^{n}$.
■ Let $y:=M x-d$. Then (LCP) is equivalent to

$$
\left\{\begin{array}{l}
x \geq 0, \quad y \geq 0, \quad\langle x, y\rangle=0 \\
M x-y=d
\end{array}\right.
$$

We denote $w:=(x, y)$.

Feasibility reformulation of LCP

Find $w \in S_{1} \cap S_{2}$
where

$$
\begin{aligned}
& S_{1}=\left\{w \in \mathbb{R}^{2 n}: T w=d\right\} \quad \text { where } T:=\left[M-I_{n}\right] \\
& S_{2}=\left\{w \in \mathbb{R}^{2 n}: w_{j} \geq 0, w_{n+j} \geq 0, \text { and } w_{j} w_{n+j}=0 \forall j \in[n]\right\} .
\end{aligned}
$$

Feasibility reformulation of LCP

Find $w \in S_{1} \cap S_{2}$
where

$$
\begin{aligned}
& S_{1}=\left\{w \in \mathbb{R}^{2 n}: T w=d\right\} \quad \text { where } T:=\left[M-I_{n}\right] \\
& S_{2}=\left\{w \in \mathbb{R}^{2 n}: w_{j} \geq 0, w_{n+j} \geq 0, \text { and } w_{j} w_{n+j}=0 \forall j \in[n]\right\} .
\end{aligned}
$$

$1 S_{1}$ is an affine set, and therefore convex.
$2 S_{2}$ is nonconvex, but can be expressed as a finite union of closed convex sets (called a union convex set ${ }^{5}$)

[^2]
Example

Let $n=1$ so that

$$
S_{2}=\left\{\left(w_{1}, w_{2}\right): w_{1}, w_{2} \geq 0 \quad \text { and } \quad w_{1} w_{2}=0\right\}
$$

Example

Let $n=1$ so that

$$
S_{2}=\left\{\left(w_{1}, w_{2}\right): w_{1}, w_{2} \geq 0 \quad \text { and } \quad w_{1} w_{2}=0\right\}
$$

Then $S_{1}=R_{1} \cup R_{2}$ where

$$
\begin{aligned}
& R_{1}=\{(a, 0): a \geq 0\} \\
& R_{2}=\{(0, b): b \geq 0\}
\end{aligned}
$$

From feasibility reformulation to optimization problem

From feasibility reformulation to optimization problem

The following are equivalent:
! $w \in S_{1} \cap S_{2}$
$2 \frac{1}{2} \operatorname{dist}\left(w, S_{1}\right)^{2}+\frac{1}{2} \operatorname{dist}\left(w, S_{2}\right)^{2}=0$
$3 \frac{1}{2} \operatorname{dist}\left(w, S_{1}\right)^{2}+\delta_{S_{2}}(w)=0$.

From feasibility reformulation to optimization problem

The following are equivalent:
■ $w \in S_{1} \cap S_{2}$
$2 \frac{1}{2} \operatorname{dist}\left(w, S_{1}\right)^{2}+\frac{1}{2} \operatorname{dist}\left(w, S_{2}\right)^{2}=0$
$3 \frac{1}{2} \operatorname{dist}\left(w, S_{1}\right)^{2}+\delta_{S_{2}}(w)=0$.

Merit functions

$$
f+g-h
$$

$1 \frac{1}{2} \operatorname{dist}\left(w, S_{1}\right)^{2}+\frac{1}{2}\|w\|^{2}-\left(\frac{1}{2}\|w\|^{2}-\frac{1}{2} \operatorname{dist}\left(w, S_{2}\right)^{2}\right)$
$2 \frac{1}{2} \operatorname{dist}\left(w, S_{1}\right)^{2}+\frac{1}{2} \operatorname{dist}\left(w, S_{2}\right)^{2}-0$
(3) $\frac{1}{2} \operatorname{dist}\left(w, S_{1}\right)^{2}+\delta_{S_{2}}(w)-0$

From feasibility reformulation to optimization problem

The following are equivalent:
$1 w \in S_{1} \cap S_{2}$
$2 \frac{1}{2} \operatorname{dist}\left(w, S_{1}\right)^{2}+\frac{1}{2} \operatorname{dist}\left(w, S_{2}\right)^{2}=0$
$3 \frac{1}{2} \operatorname{dist}\left(w, S_{1}\right)^{2}+\delta_{S_{2}}(w)=0$.
Merit
Do these functions f, g and h satisfy Assumption A?

1 $\frac{1}{2} \operatorname{dist}\left(w, S_{1}\right)^{2}+\frac{1}{2}\|w\|^{2}-\left(\frac{1}{2}\|w\|^{2}-\frac{1}{2} \operatorname{dist}\left(w, S_{2}\right)^{2}\right)$
2. $\frac{1}{2} \operatorname{dist}\left(w, S_{1}\right)^{2}+\frac{1}{2} \operatorname{dist}\left(w, S_{2}\right)^{2}-0$
$3 \frac{1}{2} \operatorname{dist}\left(w, S_{1}\right)^{2}+\delta_{S_{2}}(w)-0$

Recall...

$$
\min _{w \in \mathbb{E}} f(w)+g(w)-h(w)
$$

Assumptions A1-A4

$1 f=\min _{i \in I} f_{i}, g=\min _{j \in J} g_{j}$, and $h=\max _{m \in M} h_{m}$, where $|I|,|J|,|M|<\infty$
$2 \forall i \in I, f_{i}$ has L_{i}-Lipschitz continuous gradient on \mathbb{E}.
$3 \forall j \in J, g_{j}$ is a ρ-convex function.
$4 \forall m \in M, h_{m}$ is a C^{1} convex function on \mathbb{E}.

Illustration: Merit Function 2

Illustration: Merit Function 2

1 Clearly, f and h satisfy Assumption A2 and A4.

Illustration: Merit Function 2

1 Clearly, f and h satisfy Assumption A2 and A4.
2 Since S_{2} is a union convex set, then

$$
S_{2}=\bigcup_{j \in J} R_{j}
$$

Illustration: Merit Function 2

$$
\underbrace{0.5 \operatorname{dist}\left(w, S_{1}\right)^{2}}_{f(w)}+\underbrace{0.5 \operatorname{dist}\left(w, S_{2}\right)^{2}}_{g(w)}-\underbrace{0}_{h(w)}
$$

1 Clearly, f and h satisfy Assumption A2 and A4.
2 Since S_{2} is a union convex set, then

$$
S_{2}=\bigcup_{j \in J} R_{j}
$$

Thus,

$$
g(w)=\frac{1}{2} \operatorname{dist}\left(w, S_{2}\right)^{2}=\min _{j \in J} \frac{1}{2} \operatorname{dist}\left(w, R_{j}\right)^{2}=: \min _{j \in J} g_{j}(w) .
$$

where each g_{j} is convex. A3 is satisfied!

(Complete) Assumption A

■ $f=\min _{i \in I} f_{i}, g=\min _{j \in J} g_{j}$, and $h=\max _{m \in M} h_{m}$, where $|I|,|J|,|M|<\infty$ where I, J and M are finite index sets.
(2 $\forall i \in I, f_{i}$ has L_{i}-Lipschitz continuous gradient on \mathbb{E}.
3 $\forall j \in J, g_{j}$ is a ρ-convex function.
$4 \forall m \in M, h_{m}$ is a C^{1} convex function on \mathbb{E}.
5 For all $(i, j, m) \in I \times J \times M$, the function $f_{i}+g_{j}-h_{m}$ is coercive over \mathbb{E}.

(Complete) Assumption A

11 $f=\min _{i \in I} f_{i}, g=\min _{j \in J} g_{j}$, and $h=\max _{m \in M} h_{m}$, where $|I|,|J|,|M|<\infty$ where I, J and M are finite index sets.
2 $\forall i \in I, f_{i}$ has L_{i}-Lipschitz continuous gradient on \mathbb{E}.
$3 \forall j \in J, g_{j}$ is a ρ-convex function.
$4 \forall m \in M, h_{m}$ is a C^{1} convex function on \mathbb{E}.
5 For all $(i, j, m) \in I \times J \times M$, the function $f_{i}+g_{j}-h_{m}$ is coercive over \mathbb{E}.

Remark

For the LCP, Assumption A5 holds when M is a P-matrix (A. \& Lee, 2022).

Outline

- Introduction
- Min-convex optimization
- Acceleration Methods
- Application to LCP

■ Numerical Results

Merit Function 1

Figure: Non-accelerated and accelerated PDMC for Merit Function 1 for solving a standard LCP. ${ }^{7}$

[^3]
Merit Function 2

Figure: Non-accelerated and accelerated PDMC for Merit Function 2 for solving a standard LCP. ${ }^{7}$

[^4]
Merit Function 3

Figure: Non-accelerated and accelerated PDMC for Merit Function 3 for solving a standard LCP. ${ }^{7}$

[^5]
Thank you for listening!

Some references

- Jan Harold Alcantara \& Ching-pei Lee. Global convergence and acceleration of fixed point iterations of union upper semicontinuous operators: proximal algorithms, alternating and averaged nonconvex projections, and linear complementarity problems, 2022.
- Richard W. Cottle, Jong-Shi Pang, and Richard E. Stone. The Linear Complementarity Prob- lem. Academic Press, New York, NY, 1992.
- Minh N. Dao and Matthew K. Tam. Union averaged operators with applications to proximal algorithms for min-convex functions. J. Optim. Theory Appl., 181:61-94, 2019.
- Christian Kanzow. Some noninterior continuation methods for linear complementarity problems. SIAM Journal on Matrix Analysis and Applications, 17(4):851-868, 1996.
- R. Tyrrell Rockafellar and Roger J-B Wets. Variational Analysis, volume 317 of Grundlehren der MathematischenWissenschaften. Springer, Berlin, 1998.
- Bo Wen, Xiaojun Chen, and Ting Kei Pong. A proximal difference-of-convex algorithm with extrapolation. Computational Optimization and Applications, 69:297-324, 2018.

Critical points

For any function F, its subdifferential ${ }^{2}$ at w is

$$
\partial F(w):=
$$

lim sup
$\bar{w} \rightarrow w, F(\bar{w}) \rightarrow F(w)$

$$
(\hat{\partial} F(\bar{w}):=\{v: v \in \mathbb{E}, h(z) \geq h(w)+\langle v, z-w\rangle+o(\|z-w\|)\})
$$

Definition ${ }^{3}$

We say that w is a critical point of $f+g-h$ if

$$
0 \in \partial f(w)+\partial g(w)-\partial h(w)
$$

[^6]
[^0]: ${ }^{1}$ Wen, B. Chen, X. and Pong, T.K. A proximal difference-of-convex algorithm with extrapolation. Computational Optimization and Applications, 69:297-324, 2018.

[^1]: ${ }^{2}$ We say that w is a critical point if $0 \in \partial f(w)+\partial g(w) \quad \partial h(w)$.

[^2]: ${ }^{5}$ Dao, M.N. and Tam, M.K.. Union averaged operators with applications to proximal algorithms for min-convex functions. J. Optim. Theory Appl,, 181:61-94, 2019.

[^3]: ${ }^{7}$ Kanzow, C. Some noninterior continuation methods for linear complementarity problems. SIAM Journal on Matrix Analysis and Applications, 17(4):851-868, 1996.

[^4]: ${ }^{7}$ Kanzow, C. Some noninterior continuation methods for linear complementarity problems. SIAM Journal on Matrix Analysis and Applications, 17(4):851-868, 1996.

[^5]: ${ }^{7}$ Kanzow, C. Some noninterior continuation methods for linear complementarity problems. SIAM Journal on Matrix Analysis and Applications, 17(4):851-868, 1996.

[^6]: ${ }^{2}$ Rockafellar, R.T. and Wets, R.J. Variational Analysis, volume 317 of Grundlehren der Mathematischen Wissenschaften. Springer, Berlin, 1998.
 ${ }^{3}$ Coincides with the definition of critical point of Wen etø al. in the "usual" setting,

